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Abstract

Background: The identification of gene sets that are significantly impacted in a given condition based on microarray
data is a crucial step in current life science research. Most gene set analysis methods treat genes equally, regardless
how specific they are to a given gene set.

Results: In this work we propose a new gene set analysis method that computes a gene set score as the mean of
absolute values of weighted moderated gene t-scores. The gene weights are designed to emphasize the genes
appearing in few gene sets, versus genes that appear in many gene sets. We demonstrate the usefulness of the
method when analyzing gene sets that correspond to the KEGG pathways, and hence we called our method Pathway
Analysis with Down-weighting of Overlapping Genes (PADOG). Unlike most gene set analysis methods which are
validated through the analysis of 2-3 data sets followed by a human interpretation of the results, the validation
employed here uses 24 different data sets and a completely objective assessment scheme that makes minimal
assumptions and eliminates the need for possibly biased human assessments of the analysis results.

Conclusions: PADOG significantly improves gene set ranking and boosts sensitivity of analysis using information
already available in the gene expression profiles and the collection of gene sets to be analyzed. The advantages of
PADOG over other existing approaches are shown to be stable to changes in the database of gene sets to be
analyzed. PADOG was implemented as an R package available at: http://bioinformaticsprb.med.wayne.edu/PADOG/
or www.bioconductor.org.
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Background
Microarray-based gene expression profiling experiments,
which are routine today, allow researchers to identify, for
instance, genes differentially expressed (DE) between dis-
eased and normal patient samples or genes that change in
expression over time during a treatment. Unfortunately,
the steady increase in the amount of data generated in the
past decade from such experiments was not paralleled by
the evolution of analytical methods used to extract knowl-
edge from such datasets and, therefore, there is a gap
between our ability to measure gene expression data and
to extract workable knowledge from it.

*Correspondence: atarca@med.wayne.edu
1Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and
Detroit, MI, USA
2Department of Computer Science, Wayne State University, Detroit, MI, USA
Full list of author information is available at the end of the article

Since the beginning of the microarray-based expression
profiling experiments, researchers were interested in find-
ing common “themes” among the genes identified as dif-
ferentially expressed between two conditions. For instance
the identification of Gene Ontology (GO) terms enriched
in differentially expressed genes was used as early as 1999
[1], but became widespread only after the first on-line
GO analysis tools were made available [2,3]. As biological
annotations started to include descriptions of gene inter-
actions in the form of pathways (found in resources such
as KEGG [4], BioCarta www.biocarta.com, and Reactome
[5]), the identification of the pathways involved in various
conditions has emerged as a ubiquitous bioinformatics
task.

In general, biological pathways can be divided into gene
signaling pathways, and metabolic pathways. Gene sig-
naling pathways are graphs that use nodes to represent
genes, or gene products, and edges to represent signals
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that go from one gene to another. Metabolic pathways
are graphs that use nodes to represent biochemical com-
pounds, and edges to describe biochemical reactions that
involve such compounds. Since biochemical reactions are
usually carried out by enzymes which are coded for by
genes, in a metabolic pathway genes are associated with
edges rather than nodes. Ideally, a comprehensive pathway
analysis method would be able to take into considera-
tion all aspects of the phenomena described by a pathway.
These aspects would include the position and role of each
gene in a pathway, the types of signals between genes, the
efficiency with which a signal travels from one gene to
another, or the efficiency with which a certain reaction is
carried out, rate limiting conditions, etc. Such methods
have been proposed for both signaling pathways [6-9],
and metabolic pathways [8,10], but no method is currently
available to analyze both types of pathways taking into
consideration all the information available. Hence, even
though they do not use all information available, methods
that treat the pathways as simple gene sets are still popular
because they can be applied equally well to signaling path-
ways, metabolic pathways, GO terms, as well as arbitrary
sets of genes.

Two of the most popular such methods are the Gene
Set Enrichment Analysis (GSEA) [11] and the Gene Set
Analysis (GSA) [12]. These methods belong to the func-
tional class scoring category of gene set analysis methods
[13,14]. For a simple two group experiment (e.g. disease
vs. normal), both GSEA and GSA start with computing
a t-statistic for each gene measured on the array. Then,
a score is computed for each gene set using the t-scores
of all genes in the gene set. The significance of the gene
set scores is determined by using permutations of the
samples. Both approaches treat the genes in the gene set
equally.

In this work, we propose the Pathway Analysis with
Down-weighting of Overlapping Genes (PADOG) which
is a general gene set analysis method. The method gives
more weight to genes that are gene set-specific, than to
genes which can be found in multiple gene sets. This
is similar to the approach commonly used in informa-
tion retrieval (e.g. web search engines) that decreases the
importance of words that appear in many documents (e.g.
“and”, “or”, etc.) in favor of words that are highly specific to
given documents, the latter type being considered to carry
more information about the informational content of the
document. Similarly, in our approach, if the differential
expression affects genes that are highly specific to a given
pathway (e.g. huntingtin to Hungtington’s disease), it is
more likely that the respective pathway is truly relevant in
that condition.

The process of down-weighting popular genes does not
affect one’s ability to find a gene set to be significant when-
ever the gene set is composed mostly of ubiquitous genes,

but rather increase the contrast between gene sets that
overlap by reducing the contribution of the overlapping
genes into the gene set scores. As a simple example, with
PADOG, a gene set A having 20 out of 50 genes differ-
entially expressed, that appear only in gene set A, will be
found more significant than another gene set B of same
size that has also 20 differentially expressed genes but
which appear in other gene sets as well. Both GSEA and
GSA would find the two gene sets equally significant.

Analysis methods that do not treat all genes equally
were previously proposed for pathway analysis in an over-
representation context [6,7], or in a functional class scor-
ing context [8], yet none specifically exploit the frequency
of occurrence of genes across the pathways. Moreover,
unlike GSA, PADOG does not rely on ordinary t-scores to
derive gene set scores but uses moderated t-statistics [15]
instead. A similar idea to use non-ordinary t-scores in the
gene set scores computation was illustrated first in [16]
by using SAM statistics [17] in conjunction with GSEA.
Moreover, unlike GSA, PADOG summarizes the gene
scores into a gene set score using the mean of absolute
values instead of the maxmean statistic.

The sensitivity of gene set analysis methods (i.e. their
ability to produce significant p-values for gene sets that
are truly relevant to a phenotype), as well their ability
to rank the relevant gene sets near the top, is typically
assessed using a few data sets, by asking domain experts
to make informed guesses about which gene sets are rel-
evant to each condition/dataset. Relevance is determined
using the expert’s knowledge and/or literature citations
supporting the link between certain gene sets and the
condition under the study [6,7,11,18]. The problem is
that almost any gene set analysis result will be supported
by some references which makes an unbiased and objec-
tive comparison of various analysis methods practically
impossible. In this study, we used a different approach in
which we make fewer assumptions, and use an order of
magnitude more data sets (24 sets). The type of gene sets
considered in our validation were KEGG biological path-
ways. Each of the 24 microarray data sets that we used
(see Table 1) involved a particular disease for which there
is an associated pathway in the KEGG database [19], e.g.
Alzheimer’s disease, Colorectal cancer, Asthma, etc. We
refer to these as the target pathways, and we, very conser-
vatively, consider them to be the only ones certain to be
relevant for their respective conditions. Since the target
pathways for all 24 datasets belong to the non-metabolic
pathways category, we can restrict the analysis only to
KEGG non-metabolic pathways. Analyzing all metabolic
and non-metabolic pathways brings an additional chal-
lenge to the analysis methods because the assumed rel-
evant pathway for a given condition (dataset) is now to
be found among a larger pool of pathways. The gene set
analysis methods were compared in terms of their ability
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Table 1 The 24 data sets used to assess the proposed gene set analysis method

GEOID Pubmed Ref. Disease/Target pathway KEGGID Tissue

1 GSE1297 14769913 [20] Alzheimer’s Disease hsa05010 Hippocampal CA1

2 GSE5281 17077275 [21] Alzheimer’s Disease hsa05010 Brain, Entorhinal Cortex

3 GSE5281 17077275 [21] Alzheimer’s Disease hsa05010 Brain, hippocampus

4 GSE5281 17077275 [21] Alzheimer’s Disease hsa05010 Brain, Primary visual cortex

5 GSE20153 20926834 [22] Parkinson’s disease hsa05012 Lymphoblasts

6 GSE20291 15965975 [23] Parkinson’s disease hsa05012 Postmortem brain putamen

7 GSE8762 17724341 [24] Huntington’s disease hsa05016 Lymphocytes (blood)

8 GSE4107 17317818 [25] Colorectal Cancer hsa05210 Mucosa

9 GSE8671 18171984 [26] Colorectal Cancer hsa05210 Colon

10 GSE9348 20143136 [27] Colorectal Cancer hsa05210 Colon

11 GSE14762 19252501 [28] Renal Cancer hsa05211 Kidney

12 GSE781 14641932 [29] Renal Cancer hsa05211 Kidney

13 GSE15471 19260470 [30] Pancreatic Cancer hsa05212 Pancreas

14 GSE16515 19732725 [31] Pancreatic Cancer hsa05212 Pancreas

15 GSE19728 - Glioma hsa05214 Brain

16 GSE21354 - Glioma hsa05214 Brain, Spine

17 GSE6956 18245496 [32] Prostate Cancer hsa05215 Prostate

18 GSE6956 18245496 [32] Prostate Cancer hsa05215 Prostate

19 GSE3467 16365291 [33] Thyroid Cancer hsa05216 Thyroid

20 GSE3678 - Thyroid Cancer hsa05216 Thyroid

21 GSE9476 17910043 [34] Acute myeloid leukemia hsa05221 Blood, Bone marrow

22 GSE18842 20878980 [35] Non-Small Cell Lung Cancer hsa05223 Lung

23 GSE19188 20421987 [36] Non-Small Cell Lung Cancer hsa05223 Lung

24 GSE3585 17045896 [37] Dilated cardiomyopathy hsa05414 Heart

Each data set comes from tissues affected by a specific disease. The KEGG pathway describing that disease is henceforth considered to be the target pathway. The
analysis methods were compared in terms of their ability to rank the target pathway as high as possible in the analysis of each data set.

to produce significant p-values for these target pathways
and rank them near the top.

Methods
Existing methods
The two methods we chose to compare PADOG against
are the Gene Set Enrichment Analysis (GSEA) [11] and
the Gene Set Analysis (GSA) [12]. Briefly, GSEA works
as follows. Let GSi denote the ith gene set, where i =
1..NGS. For each gene j on the array, GSEA computes
a t-statistic zj for the differential expression of the gene
between the disease group and the control group. A gene
set score S(GSi) is computed similar to a signed version
of the Kolmogorov-Smirnov statistic between the values
zj, j ∈ GSi and their complement (genes measured on the
array but not belonging to the gene set). The class labels
of the arrays are permuted and the significance of the gene
set score is assessed by determining the null distribution
of the gene set score.

The Gene Set Analysis (GSA) [12] differs from GSEA in
two ways. Firstly, the gene set summary statistic used is
the maxmean statistic, defined as:

Smax(GSi) = max
(∑

z(+)
j /n,

∑
z(−)

j /n
)

where the (+) and (−) signs identify the positive and neg-
ative t-scores respectively, and n represents the number of
genes in the gene set. Secondly, GSA differs from GSEA by
re-standardizing the gene set scores by taking into account
scores from sets formed by random selection of genes.
Permutations of class labels are then used to infer the sig-
nificance of the standardized gene set scores. The need for
re-standardization is justified by the fact that, given that
the genes are correlated (they tend to have either high or
low t-scores simultaneously), the gene set score computed
with the true class labels will be systematically larger than
with permuted class labels and, hence, the significance of
all gene sets will be overstated.
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Pathway Analysis with Down-weighting of Overlapping
Genes (PADOG)
Let GSi with i = 1..NGS be the collection of gene sets to
be analyzed, each containing N(GSi) genes, and G be the
set of all genes measured on the array that can be mapped
to at least one gene set to be analyzed. Then let Tg be the
value of a moderated t-score [15] of the gene g between
the two conditions of interest with g ∈ G. The moderated
t-scores are similar to ordinary t-scores, except that their
standard errors have been moderated across genes, i.e.,
shrunk towards a common value using a Bayesian model
[15]. The moderated t-scores are expected to be more
reliable than ordinary t-scores because the shrinkage of
the gene standard deviations will prevent large t-scores to
occur only due to small gene standard deviations.

Moreover, let f (g) be the frequency of gene g across all
gene sets to be analyzed. Here f (g) can take values from
1 to NGS since a gene can be either specific to a gene set
by appearing only in that gene set, or it is present in all
gene sets, respectively. We want to weight the t-scores of
the genes with a function of their frequency in such a way
that the most frequently appearing gene gets a weight of
w = 1.0, while gene set specific genes get double weight
(w = 2.0). We chose a monotonically decreasing function
to relate the gene weight w(g) to the gene frequency f (g)

so that it is bounded between 1.0 and 2.0 and drops faster
with increasing frequency values:

w(g) = 1 +
√

max(f ) − f (g)

max(f ) − min(f )
(1)

For illustration purposes, the distribution of gene fre-
quencies across all 143 KEGG non-metabolic pathways
(treated here as gene sets), as well as the dependency of
gene weights on gene frequency, is shown in Figure 1. For
each gene set we compute a score as:

S0(GSi) = 1
N(GSi)

∑
g∈GSi

|T (g)| · w(g) (2)

The formula above describes the gene set scores as the
mean across all genes in the gene set of the weighted
absolute moderated t-scores. The gene set scores obtained
with the formula above are first standardized using a
row randomization approach described in [12] to yield
S′

0(GSi). The row randomization consists of subtracting
the mean and dividing by the standard deviation of gene
set scores that could be obtained by randomly selecting
sets of genes with the same size as the current gene set.
Given that our gene set summarization function Eq. 2
is essentially a mean (of absolute weighted moderated t-
scores) both the row standardization mean and standard
deviation can be inferred from the mean and standard
deviation of |T (g)| · w(g) values of all genes on the array,
as the central limit theorem would suggest, and hence
no actual permutations are needed. More specifically, the
row randomization mean for gene set GSi will given by
the mean (of absolute weighted moderated t-scores) of
all genes on the array, and the row randomization stan-
dard deviation can be calculated as the standard deviation
of |T (g)| · w(g) values of all genes on the array divided
by

√
N(GSi). A second standardization is applied by sub-

tracting the mean and dividing to the standard deviation
of S′

0(GSi) scores across all NGS gene sets to obtain the
observed standardized scores, S∗

0(GSi). The probability
PPADOG(GSi) to observe such a large or larger standard-
ized score is determined by permuting Nite = 1000 times
the array/samples labels:

PPADOG(GSi) =
∑

ite I(S∗
ite(GSi) ≥ S∗

0(GSi))

Nite
(3)

where I is a function that returns 1 when the argument
is true and 0 otherwise, and S∗

ite(GSi) represents the stan-
dardized score obtained with the ite-th permutation of the
samples for gene set GSi.

Figure 1 The weighting function used in PADOG. The left panel shows the distribution of gene frequencies across the set of KEGG non-metabolic
pathways. About 42% of genes that appear in at least one pathway appear also in other pathways. Gene frequencies over the 99th percentile of
frequencies, i.e. over 20, were replaced with the value 20. The right panel shows the gene weight (Eq. 1) as a function of gene frequency.
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Assessing the sensitivity and gene set ranking capability
using real data
To assess the sensitivity and ranking capability of the gene
set analysis methods discussed in this paper, we iden-
tified in the Gene Expression Omnibus (GEO) [38], 24
microarray data sets each involving a particular disease.
For each such disease, we considered the KEGG path-
way that describes the biological phenomena taking place
in that disease as the target pathway. For instance, the
Alzheimer’s disease pathway is the target pathway for all
Alzheimer data sets, etc. Table 1 shows the details about
these 24 datasets. For most diseases considered, there are
several associated data sets in this collection. The gene
set analysis methods were compared in terms of their
ability to produce low p-values, and rank at the top these
target pathways (one in each data set). A schematic rep-
resentation of the benchmark system used to assess the
performance of each gene set analysis method is shown
in Figure 2. There were three categories of statistics com-
puted to compare the performance of the gene set analysis
methods considered in this study:

1. Statistics that describe the distribution of the 24
target pathway’s p-values, including the geometric
mean and median (the lower the better), and the
percentage of target pathways with nominal p < 0.05
(the higher the better). This later statistic is an
estimate of the sensitivity of a given analysis method.
The percentage of target pathways with False
Discovery Rate [39] corrected p-values (called
q-values) less than 0.05 is also given.

2. Statistics that describe the distribution of the 24
target pathways ranks, including mean and median
(the lower the better). The rank of a target pathway,
having the ith smallest p-value amongst all NGS
pathways analyzed for a given dataset, will be equal
to i/NGS · 100.

3. Statistics that allow to determine if a given pathway
analysis method produces better rankings than a
reference method, chosen to be GSA since it was the
best among the two published methods that we
tested. A simple method to test that the ranks
produced by a given method for the 24 target
pathways are smaller (better) than the reference
method would be to use a one-tailed paired Wilcoxon
test, the pairing being at data set level. However, the
Wilcoxon test assumes that the different ranks are
independent between the 24 datasets, yet this is may
not be the case because some ranks are obtained for
the same pathway in up to 4 datasets (see Table 1).
Another approach that we used to analyze the ranks
while accounting for the eventual lack of
independence among them was to fit a linear mixed-
effects model. The dependent variable in this model
were the rank values, while the explanatory variables
were the analysis method (factor with two levels,
with the reference level being GSA) and the dataset
ID (to reflect that the ranks are paired at the dataset
level), while the random effects were the pathway
IDs. Both the coefficient, and one-tailed p-value that
a given analysis method produces better (smaller)
ranks than the reference method were reported.

Figure 2 Obtaining ranks and p-values of the target pathways for a given gene set analysis method based on a collection of 24 datasets.
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Note that the gene set analysis methods could have been
compared also in analyzing gene ontology terms instead of
pathways, however, choosing one GO term most relevant
for each dataset would have been more subjective.

Assessing the sensitivity of gene set analysis using
simulated data
A sensitivity comparison between GSEA, GSA and
PADOG using simulated data was performed as in [12],
but further expanded to also allow for overlap between
gene sets. Expression data for 1000 genes and 100 samples
(50 in each condition) is generated from a random nor-
mal distribution N(0, 1). A number of 50 gene sets of size
20 were created, with the expression levels of some of the
genes in gene set 1 (GS1) being artificially altered to make
only this gene set relevant to the phenotype. Expression
levels of genes in GS1 were changed according to the fol-
lowing 5 scenarios by varying the amount of change, the
number of genes that change in the gene set, as well as the
proportion of up- to down-regulated genes:

1. Level of the first 15 genes of GS1 was increased by 0.3
units in group 2.

2. Level of the first 10 genes of GS1 was increased by 0.3
units and the level of the next 5 genes was decreased
by 0.3 units in group 2.

3. Level of the first 8 genes of GS1 was increased by 0.3
units and the level of the next 7 genes was decreased
by 0.3 units in group 2.

4. Level of the first 7 genes of GS1 was increased by 0.4
units and the level of the next 3 genes was decreased
by 0.4 units in group 2.

5. Level of the first 5 genes of GS1 was increased by 0.4
units and the level of the next 5 genes was decreased
by 0.4 units in group 2.

A number of 50 data sets were generated for each of the
six scenarios above. Orthogonal on the different scenarios
we considered three analysis setups that could influence
the results of PADOG but not GSA and GSEA, accord-
ing to whether or not the genes in GS1 are allowed to
be present in other gene set as well (e.g. (GS50)). In the
first setup I), GS1 did not overlap with other gene sets
as in [12], II) All genes designed to be DE in GS1 were
included also in GS50, and III) All non-DE genes of GS1
were included in GS50. With setup I) we are basically
interested in assessing if the gene set summarization func-
tion of PADOG (mean or absolute values) combined with
the moderated t-scores compares favorably to GSA and
GSEA, because in the absence of overlap, the genes of GS1
will have the same weight (w = 1.0). When the DE genes
in GS1 appear also in other gene sets but the non-DE do
not (setup II), PADOG is expected to give higher p-values
to GS1 compared to the situation when there is no overlap.

This is because the weight of the DE genes in this case will
be lower than the weight on non-DE genes. In contrary, if
the genes that are non-DE in GS1 overlap but the DE genes
are specific to GS1 (setup III) then PADOG is expected to
produce smaller p-values for GS1 because the DE genes
will have more weight and also larger t-scores.

Assessing the specificity of gene set analysis
To test the ability of the gene set analysis methods to
not reject the null hypothesis when it is true, i.e. their
specificity, we conducted two simulation studies.

Simulation of the null hypothesis by sample labels
permutation
In the first simulation study all the 24 data sets were
considered, but their array/samples class labels were per-
muted at random before analysis so that the correlation
structure between genes is preserved. In 100 different tri-
als, we computed several of the statistics described above,
including the median of target pathways p-values, median
ranks, and the percentage of pathways with p < 0.05. The
average of these statistics over the 100 trials are reported.

The purpose of this simulation was two-fold. First,
it allows us to determine if the target pathways-based
benchmark works, i.e. if the ranking results are worse for
all methods when the labels are permuted compared to
when the true class labels are used. Second, it allows us to
estimate the false positive rate (1-specificity) of each gene
set analysis method and compare it with the level expected
under the null hypothesis. All analysis methods were run
on the same 100 permutations of the original class labels
of each of the 24 data sets to eliminate any differences
introduced by random chance. The number of internal
iterations used by each analysis method was Nite = 500.

Simulation of the null hypothesis by generating random data
At the suggestion of one of the reviewers, a second type of
simulation was performed to determine the false positives
rate of gene set analysis methods by generating random
data from a normal distribution with mean 0 and standard
deviation of 1, N(0, 1). For each of the 24 real datasets,
50 fake replicas were created by maintaining the actual
sample size and number of genes but generating data at
random, for a total of 1200 simulated datasets. The struc-
ture of the gene sets was preserved as defined by the 229
KEGG metabolic and non-metabolic pathways, therefore
maintaining a meaningful overlap between the different
genes in the gene sets. The fraction of all significant path-
ways (false positive rate) at different α thresholds was
determined.

Data Analysis
For all 24 datasets shown in Table 1 which were avail-
able from the Gene Expression Omnibus (GEO), the
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analysis was performed consistently by: a) removing
outlier arrays (if necessary), b) log transforming the
data and normalizing it, c) performing a moderated t-
test between groups and computing probes/probesets p-
values, d) resolving duplicate probes/probesets to Entrez
ID mappings by keeping the probe/probeset with small-
est p-value for each unique gene and, e) filtering out all
genes that could not be mapped on any of the pathways.
The normalization of datasets obtained on Affymetrix
arrays was performed using the RMA algorithm [40]
implemented in the affy [41] package of Bioconduc-
tor[42], while normalization of of datasets run on Illumina
arrays were normalized using the quantile normaliza-
tion algorithm [43] implemented in the preprocessCore
of Bioconductor. The package limma [44] was used to
compute a moderated two-sample paired or unpaired
t-score depending on the particular design of each exper-
iment.

The GSEA analysis was performed using the R imple-
mentation available freely at www.broadinstitute.org/
gsea/index.jsp, while the GSA analysis was performed
using the GSA R package [45]. PADOG was implemented
in R as well, together with the validation benchmark sys-
tem comparing the methods. All methods were run using
1,000 iterations to estimate the pathway p-values shown in
Tables 2, 3, 4 and 5, while 500 iterations were used in the
specificity analysis results shown in Table 6 and 7.

The set of 229 metabolic and non-metabolic pathways
and their genes were obtained from the KEGG.db annota-
tion package [46] of Bioconductor [42]. The split between
metabolic and non-metabolic pathways was done based
on KEGG’s classification.

All analyses were run under the R statistical language
and environment [47] version 2.14 and using other infras-
tructure packages available in Bioconductor version 2.9.

Results and discussion
Sensitivity and rank analysis using real data
We compared the PADOG method proposed here with
two existing methods (GSA and GSEA). The analysis
was performed on i) 143 non-metabolic pathways (which
included all target pathways) and ii) 229 metabolic and
non-metabolic KEGG pathways. The criteria used in the
comparison between these methods were the sensitivity,
the ranking, as well as the specificity of the gene set anal-
ysis methods considered. Table 2 shows the summary of
gene set analysis results for the three different methods
based on the panel of 24 datasets described in Table 1
when analyzing only KEGG non-metabolic pathways.

PADOG compared favorably to both GSA and GSEA in
terms of median and geometric mean p-values of the tar-
get pathways (which are expected to be relevant). Eight
(33.3%) of the 24 target pathways were found to be sig-
nificant (with a p-value less than 0.05) with PADOG, but
only three did so with GSA (12.5%), and none with GSEA.
PADOG was the only method to identify one (4.2%) of
the 24 target pathways as significant after adjusting for
multiple testing. In terms of the rank that each target path-
way received in its data set (sorting pathways by p-values),
PADOG produced significantly better (lower) rank values
compared to GSA, as evaluated by both a paired Wilcoxon
test (p = 0.0007), and a linear mixed-effects model (p =
0.0008). This later test accounts for the fact that the same
disease pathway is the target pathway in up to 4 data sets
(see Table 1). PADOG improves (reduces) the rank of tar-
get pathways by 7.2 rank units compared to GSA, which
in turn is better than GSEA by 13.7 units. In other words,
on average across the 24 data sets, the target pathways are
ranked by PADOG approximately 7 rank units better than
GSA, and approximately 21 rank units better than GSEA.
The paired difference in ranks for the target pathways

Table 2 Comparison between gene set analysis methods in terms of sensitivity and pathway ranking when analyzing 143
KEGG non-metabolic pathways

GSEA GSA PADOG

p geometric mean 0.2846 0.1516 0.0585

p median 0.2468 0.147 0.1225

% p < 0.05 0 12.5 33.3

% q < 0.05 0 0 4.2

rank mean 42.31 28.64 21.45

rank median 35.84 21.15 14.69

Wilcoxon p 0.9885 reference 0.0007

LME p 0.9909 reference 0.0008

LME coefficient 13.67 reference -7.20

The table shows statistics computed from nominal and adjusted p-values, and ranks of the 24 target pathways only, including geometric mean, median and
percentages of pathways significant at 0.05 level based on nominal and adjusted p-values (q-values). The results of comparing the ranks of each method against GSA
method (chosen as reference), using a paired Wilcoxon test and a linear mixed-effects model, are included. The best value for each criterion is shown in bold.

www.broadinstitute.org/gsea/index.jsp
www.broadinstitute.org/gsea/index.jsp
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Table 3 Comparison between pathway analysis methods in terms of sensitivity and pathway ranking when analyzing 229
KEGG metabolic and non-metabolic pathways

GSEA GSA PADOG

p geometric mean 0.2846 0.1387 0.0485

p median 0.2468 0.142 0.091

% p < 0.05 0 16.7 33.3

% q < 0.05 0 0 4.2

rank mean 41.42 26.97 18.95

rank med 38.43 16.7 13.05

Wilcoxon p 0.9956 reference 0.0006

LME p 0.9962 reference 0.0023

LME coefficient 14.45 reference -8.02

The table shows statistics computed from nominal and adjusted p-values, and ranks of the 24 target pathways only, including geometric mean, median and
percentages of pathways significant at 0.05 level based on nominal and adjusted p-values (q-values). The results of comparing the ranks of each method against GSA
method (chosen as reference), using a paired Wilcoxon test and a linear mixed-effects model, are included. The best value for each criterion is shown in bold.

Table 4 A sensitivity analysis using simulated data in the absence and presence of overlap between gene sets

Scenario GSA GSEA PADOG Setup I PADOG Setup II PADOG Setup III

1 5e-04 0.0015 0.0121 0.0378 0.0067

2 0.0276 0.225 0.0113 0.0374 0.0059

3 0.0654 0.2539 0.0133 0.0397 0.0111

4 0.0103 0.1535 0.0018 0.0271 3e-04

5 0.0161 0.2352 0.0011 0.016 1e-04

The table shows the mean p-values for GS1 (designed to be relevant to the phenotype) over 50 different trials in each of the 5 different scenarios. GSA and GSEA
p-values do not change if genes in GS1 are found in other gene sets as well. Results for PADOG are given in the absence of overlap (Setup I), presence of overlap
between the genes designed to be DE in GS1 and other gene sets (Setup II), and presence of overlap between the non-DE genes of GS1 and other gene sets (Setup III).
All methods used 1000 permutations to compute the two sided p-values for GS1 . Best values are shown in bold and second best are italicized.

Table 5 Determining the contribution of gene weighting and moderated t-scores in PADOG when analyzing 229 KEGG
metabolic and non-metabolic pathways

noM noW PADOG noMnoW

p geomean 0.0480 0.1330 0.0486 0.1225

p med 0.092 0.1695 0.091 0.1595

% p.value<0.05 33.3 16.7 33.3 16.7

% q.value<0.05 8.3 0 4.2 0

rank mean 20.52 22.33 18.95 22.48

rank med 14.38 15.71 13.05 16.81

p Wilcox. 0.0260 0.371 0.002 reference

p LME 0.0463 0.314 0.0030 reference

coef. LME -1.96 -0.15 -3.53 reference

The table shows statistics computed from nominal and adjusted p-values, and ranks of the 24 target pathways only, including geometric mean, median and
percentages of pathways significant at 0.05 level based on nominal and adjusted p-values (q-values). The results of comparing the ranks of each method against
noMnoW method, using a paired Wilcoxon test and a linear mixed-effects model, are included. The best value for each criterion is shown in bold. PADOG is compared
against simpler approaches that i) use gene weights but regular rather than moderated t-scores (noM), ii) use moderated t-scores but no gene weights (noW) and iii)
use neither moderated t-scores nor gene weights (noMnoW).

between pathway analysis methods and the GSA method,
chosen as reference, are also shown using box plots in
Figure 3.

To determine the robustness of PADOG with respect
to changes in the collection of gene sets to be analyzed

changes, we have run the same comparison shown in
Table 2, on the entire set of 229 KEGG human pathways
(metabolic and non-metabolic). An increase in the num-
ber of gene sets to be analyzed for a fixed gene expression
dataset, is expected to impact the various methods in
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Table 6 Comparing gene set analysis methods performance under the null hypothesis simulated by class labels
permutation

p median Rank median % p.value<0.05

PADOG 0.49 48.9 4.9

GSA 0.51 50.6 5.3

GSEA 0.50 50.1 5.0

The medians of target pathways p-values and ranks, as well as the fraction of target pathways with p < 0.05 were computed in 100 simulation trials. At each trial the
class labels of the samples in each of 24 real datasets were permuted before analysis. The averages statistics over the 100 trials are shown.

Table 7 False positive rates when null hypothesis is simulated by generating random expression data

α = 0.05 α = 0.01

PADOG 0.051 0.012

GSA 0.052 0.015

GSEA 0.052 0.012

The fraction of all pathways significant at α = 0.05 and α = 0.01 were computed after applying the three analysis methods on 1200 datasets having expression data
generated from a random normal N(0,1) distribution. The collection of gene sets used in the analysis was defined by the 229 KEGG non-metabolic and metabolic
pathways.

Figure 3 Comparing the p-values and ranks of target pathways between gene set analysis methods when analyzing 143 KEGG
non-metabolic pathways. The boxplots show the distribution of the target pathways p-value (left panel) and ranks (middle panel), as well as the
paired difference in ranks with respect to GSA, chosen as reference method (right panel). The lower the p-values, ranks and ranks differences, the
better method.



Tarca et al. BMC Bioinformatics 2012, 13:136 Page 10 of 14
http://www.biomedcentral.com/1471-2105/13/136

different ways. With PADOG, when there are more gene
sets and, hence, more genes to be analyzed, the moderated
t-scores of genes in all gene sets are expected to change
because the shrinkage of standard deviations in the t-
scores is based on a larger pool of genes [15]. Secondly,
the exact weights assigned to genes in PADOG depend
on the number of gene sets in which they appear so these
gene weights also change when the collection of gene
sets to be analyzed changes. Table 3 and Figure 4 show
that PADOG performed favorably compared to the other
methods, and that the gains in terms or ranking and sen-
sitivity are robust to changes in the collection of gene sets
to be analyzed. Moreover, unlike any other method tested,
PADOG identified one (4.2%) of the 24 target pathways as
significant after adjusting for multiple testing.

Sensitivity analysis using simulated data
The result of the sensitivity analysis based on 50 simulated
data sets in each of the 5 different scenarios are given in
Table 4. These results show that when all genes designed
to be differentially expressed (DE) in GS1 are changing in

the same direction (scenario 1), GSA and GSEA have an
advantage over PADOG while the opposite is true in all
remaining 4 scenarios. These results can be understood
by considering the fact that GSA and GSEA statistics are
designed to find such cases when all the genes in the gene
set change in the same direction while PADOG’s summary
statistic is more flexible to accommodate cases when the
changes occur in both directions. When the overlap favors
the DE genes in GS1 (Setup III), that is, when its DE genes
are specific to this gene set while its non DE-genes are
not specific to the gene set, the performance of PADOG
increase in all scenarios 1 through 5, as compared to the
absence of overlap. However, even when the overlap is not
favorable to GS1 (setup I), that is, when all its non-DE
genes are specific to this gene set, PADOG still performes
better than GSA and GSEA under scenarios 2 through 5.

Sources of improvement in PADOG
The use of gene weights is the main source of improve-
ment with PADOG in terms of ranking and power. This
is shown in Figure 5 and Table 5 in which PADOG is

Figure 4 Comparing the p-values and ranks of the target pathways between gene set analysis methods when analyzing 229 KEGG
non-metabolic and metabolic pathways. The boxplots show the distribution of the target pathways p-value (left panel) and ranks (middle panel),
as well as the paired difference in ranks with respect to GSA, chosen as reference method (right panel). The lower the p-values, ranks and ranks
differences, the better method.
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Figure 5 Determining the contribution of gene weighting and moderated t-scores in PADOG performance. The boxplots show the
distribution of the target pathways p-value (left panel) and ranks (middle panel), as well as the paired difference in ranks with respect to noMnoW,
chosen as reference method (right panel). The lower the p-values, ranks and ranks differences, the better method. PADOG is compared against
simpler approaches that i) use gene weights but regular rather than moderated t-scores (noM), ii) use moderated t-scores but no gene weights
(noW) and iii) use neither moderated t-scores nor gene weights (noMnoW).

compared with simpler alternative methods that i) use
gene weights but regular rather than moderated t-scores
(noM), ii) use moderated t-scores but no gene weights
(noW ) and iii) use neither moderated t-scores nor gene
weights (noMnoW ). As it can be seen in Figure 5 left panel
both methods that do not use weights (noW and noM-
noW) give higher (worse) p-values for the target pathways
than the two other methods that use weights (PADOG
and noM). Also as, shown in Table 5, the use of moder-
ated t-scores alone (noW) does not improve the raking
compared to the reference (noMnoW) (mean rank is 22.3
vs 22.5 respectively). Although the use of weights (noM)
improves the ranking significantly compared to the ref-
erence method (noMnoW), the improvement is higher in
the presence of the moderated t-scores.

Specificity analysis of gene set analysis methods
Two simulation studies were performed to determine
whether the improved sensitivity of the PADOG method,

i.e. producing lower p-values for the target pathways,
comes at the expense of reduced specificity (increased
false positive rate). Table 6 shows three of the same
statistics introduced in Table 2 (median p-values, median
ranks, and percentage of pathways with p < 0.05) except
that their average was taken over 100 trials in which the
class labels of the arrays in all 24 datasets were randomly
permuted before the analysis. The percentage of target
pathways with p < 0.05 is now the false positive rate
(FP) because using random class labels models the null
hypothesis in which expression levels are dissociated from
the studied phenotypes, yet the gene-gene correlations are
preserved. Under these circumstances, any pathways that
are reported as significant by any method are, in fact, false
positives.

Table 6 shows that, under the null hypothesis, the
average median p-values, median ranks and fraction of
pathways with p < 0.05 across the 100 random permuta-
tions are 0.49, 48.9% and 0.049, respectively for PADOG
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and similar values are obtained for GSA and GSEA. This
is expected since when class labels are permuted, the
p-values of the target pathways should be uniformly dis-
tributed between between 0 and 1 (expected mean 0.5),
and rank values should be uniformly distributed between
1/NGS · 100 = 0.44 and 100 (expected mean 50.22) where
NGS is the number of gene sets analyzed. Table 6 also
shows that the average median p-values and median ranks
are much above (worse) than the level they had when true
class labels were used in the analysis (see Table 2). This
is the case for all analysis methods. These results prove
that: i) the target pathways were indeed in average relevant
to their respective phenotypes, ii) the benchmark system
was sound, and iii) both the novel, as well as the existing
methods were correctly deployed.

An additional simulation in which 1200 datasets were
generated by drawing random values from a normal dis-
tribution has yielded similar results as the previous simu-
lation. In this case the false positives rate was estimated as
the fraction of all pathways across all 1200 datasets with
a p-value less than a given threshold α. The estimated
false positive rates of all three methods were very close
to the expected α levels as shown in Table 7. This again
confirms that PADOG is not expected to find significant
gene sets more often than expected by chance regardless
if gene are correlated (as in the simulation above) or not
(this simulation).

Specificity analysis of the set of target pathways
In response to the suggestion of one of the reviewers, we
aimed at determining how specific the target pathways
were to their respective conditions. Given that the phe-
notype in 16 out of the 24 datasets used in our sensitivity
assessment benchmark study is a form of cancer, we deter-
mined if the target pathway for each of these cancer types,

in average, is found to be more significant than other
general pathways typically associated with cancer such as
Apoptosis, Cell cycle, Pathways in cancer, and RNA poly-
merase. Table 8 shows that in average on the 16 cancer
datasets PADOG shows the strongest evidence (small-
est p-values and rank statistics) for association between
the pehnotype of the dataset and KEGG’s disease specific
pathway for the phenotype (target pathway). The target
pathway was preferred by all three methods to any other
generic cancer related pathway that we have included
in this comparison, based on median p-values and, by
PADOG and GSA based on median ranks as well. The
Pathways in cancer gene set came in a close second for
both PADOG and GSA. While for Apoptosis and Cell cycle
the median p-values and ranks were around 25% for all
methods, for the RNA polymerase pathways these values
were above 0.5. This analysis provides evidence that the
target pathways we chose were indeed specific for their
respective phenotypes.

Conclusions
The original contribution of this paper is two-fold. Firstly,
this paper introduces the idea of gene weighting in gene
set analysis on the basis of gene frequency across the gene
sets to analyzed. The reasoning behind this type of gene
weighting is that whenever a gene belongs to multiple
gene sets, that particular gene is less useful in prioritiz-
ing among those gene sets. Conversely, the differential
expression of a gene that is present only on a single gene
set/pathway represents a stronger evidence that the given
gene set/pathway is impacted in the given condition. A
second original contribution is the validation procedure
deployed here. The classical approach involves analyzing
a handful of selected data sets and discussing the results
in the light of the existing literature. This is subjective

Table 8 A specificity analysis of the target pathways on 16 cancer data sets

Pathway type Statistic GSEA GSA PADOG

Target p med 0.2603 0.087 0.043

Target rank med 39.56 10.15 6.42

Apoptosis p med 0.3329 0.203 0.1985

Apoptosis rank med 37.56 24.24 28.76

Cell cycle p med 0.3133 0.325 0.227

Cell cycle rank med 26.29 36.35 28.61

Pathways in cancer p med 0.351 0.114 0.0465

Pathways in cancer rank med 47.54 13.21 8.41

RNA polymerase p med 0.5 0.681 0.6485

RNA polymerase rank med 57.78 71.51 63.33

The table shows a comparison between the pathways specifically designed by KEGG for each type of cancer (Target pathways) and other pathways that are
commonly involved in many cancers. The table shows statistics computed from nominal p-values, and ranks of each type of pathway for the 16 cancer datasets shown
in Table 1. PADOG gives the most significant p-values and best ranks to the target pathways. For each analysis method, the values for type of pathway with the
smallest median p-values and ranks (strongest association with the phenotype) are shown in bold, while the second smallest values are italicized.
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and makes the comparison of various methods practi-
cally impossible. The validation proposed here involves
the analysis of a large number of data sets (24 in this
case) that can be objectively associated with a target gene
set/pathway. This objective association is based on the
fact that the samples analyzed are collected from tissues
affected by the target disease (e.g. in the analysis of col-
orectal cancer samples, the colorectal cancer pathway is
chosen as the target pathway, etc.). This approach allows
a comparison of analysis methods in terms of sensitiv-
ity and ranking. Such a comparison is: a) objective, b)
reproducible, and c) independent of the accuracy and
thoroughness of a literature search. Using this approach,
we have shown that PADOG is able to identify the tar-
get pathways as significant more frequently and rank them
consistently higher than two of the best existing methods
for the analysis of gene sets based on high-throughput
gene expression data.
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